Formal — Coupling Hypothesis
Mathematical and Operational Admissibility of Operators Post-y,

1 Scope and Positioning

This document formalizes the — coupled pipeline used in Chamber XXXV. is
treated as a global selection layer acting on an ensemble of discrete structures;
is treated as a geometric / stability layer acting on the -filtered ensemble.
The goal is to define (i) a mathematically testable coupling hypothesis and
(ii) a class of -operators admissible after the canonical 45 selection.

Canonical upstream fact (assumed). 4 is the Rj-aligned bandpass
selector: it filters structures by proximity to a shared baseline target Viarget
and yields a coherent acceptance band while preserving protected macro-
invariants (within a fixed guardrail). Chamber XXXV takes this as given
and does not redefine .

2 Objects, Ensemble, and Baseline Metrics

2.1 Ensemble

Let S denote the space of finite structures (e.g., graphs) generated under a
controlled generator family. An experimental run constructs a finite ensem-
ble
E:{Sl,...,SM} CS.
2.2 Baseline scalar proxy V and residual R,
Each structure S is assigned scalar observables (examples used upstream):
Zy(S) €10,1], Gap(S) > 0, CycleT(S) > 0.

Define the vacuum proxy

V(S) = aZy(S) + B + v CycleT(S),

Gap(S) +¢
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with fixed weights «, 8,7 > 0 and small € > 0.
Let the baseline target be a functional of the baseline ensemble (e.g., the
median):

V:carget = medlan{V(S) 1S e E}
Define the ensemble mean
— 1
V(E) = 77 2 V().
SeFE

and the residual proxy

’V(E) - ‘/target’
RA(F) = .
A( ) max(‘vtarget’v 5)

2.3 Protected macro-invariant vector /(5)

Let I : S — R? denote protected observables (“-protected macro invariants”)
computed per structure and then ensemble-averaged. Write

1(8) = (L(S),.... I(S)),  I(E)= IJEI 3 1(9).

A canonical example set is:

A
L(S) = p(n:)’ I(S) = o I5(S) = H(degree distribution of S),

but the admissibility framework below does not depend on the specific choice,
only that I is fixed and guarded.

3 4 Selection as a Fixed Upstream Map

4 1s an acceptance mask defined on E by proximity to the shared baseline
target Viarget. Let k = | fM ] where f € (0,1) is the keep fraction. Define
the score

score(S) = —|V(5) — Viarget|-

Let Eq C E be the subset of size k maximizing the score (i.e., closest to
‘/target):
Eq = Qg (E) = Top-k structures by score(SS).

The selection is canonical in the sense that it is deterministic given F, Viarget,

and f.



4 The — Coupling Hypothesis

4.1 as a stabilizing operator family

A -operator is a map acting on structures:
T9: S —> S,

parameterized by 6 (which may include step size, iteration count, smoothing
strength, etc.). We extend 7y to ensembles pointwise:

TQ(EQ) = {T@(S) ;S e EQ}
4.2 Two core requirements: (i) stationarity improvement,
(ii) invariant preservation

Define the residual after :
R{(0;E) := Ra(19(Eq)), where Eq = Qu(E).
Define relative drift of protected invariants:

drift; (0; E) = |I;(1;‘;(]5§;)_2];)Ijg) ’, j=1,....d,

with a small floor > 0 to prevent denominator blow-up.

4.3 Coupling hypothesis (mathematical statement)

Hypothesis H(—): Existence of a -locking regime. There exists a
nonempty parameter region O, such that for a nontrivial class of genera-
tors (families of E), for all § € Oy,

(H1) Residual contraction: R} (6;E) < (1 —k)Ra(Eq) for some k > 0,

(1)

(H2) -protection: ax, drift;(0; E) < 6, (2)
(H3) Nondegeneracy: ||EE?’| € [a,b] € (0,1) (coherent acceptance band, not 0% or 100%).

(3)



Interpretation. 4, creates a coherent band FEq in which can act con-
tractively on stationarity residual while leaving protected macro-invariants
stable. The coupling is not “ always improves things”; it is the claim that
a regime exists where becomes an admissible stabilizer because has already
selected the right band.

4.4 Operational hypothesis (testable form)

For a run family {E(}2 | (different seeds, same configuration class), define:

Improve, (0) = 1(RR(9; EM) < RA(Eg)) — A),
Stable,(0) = 1(max drift; (6; EM) < 5),
J
Band, = 1<\Eg)]/|E(T)| € [a,b]).
Then the coupling hypothesis is supported if there exists 6 such that

R

1

= g Improve, (0) Stable,(f) Band, > po,
r=1

for a chosen confidence level py (e.g., po = 0.8).

5 Admissibility Framework for Operators (Post-y,)

5.1 Definition (Admissible operator)

Fix guardrails A > 0 (minimum residual improvement), § > 0 (maximum
invariant drift), and [a,b] C (0,1) (coherent band window). A -operator
family {79 }oco is admissible post-y if there exists 0 € © such that, across a
prescribed multi-seed run set,

1. Residual improvement (-conditioned):

RA(T@(EQ)) < RA(EQ) — A.

2. -protection:
max drift; (0; ) < 4.
J
3. No -backreaction: 7y does not modify Viarget and does not re-run
internally. ( is upstream and fixed.)

4. Structural well-posedness: 7(S) € S for all S, and the map is
deterministic given (5, 0).



5.2 Important non-admissible behaviors
A operator is not admissible post-4 if it:

e trivially drives Ry down by redefining Viaget or modifying the residual
formula;

e masks instability by collapsing protected invariants via averaging arti-
facts;

e induces acceptance degeneracy (effectively requiring €2 to accept nearly
all or nearly none to pass);

e is non-deterministic unless its randomness is treated as part of the
operator definition and audited.

6 Canonical -Operator Families Admissible in Prin-
ciple

Below are -operator families designed to be admissible after 4. Each is
expressed abstractly so it can be instantiated on graphs, lattices, or other
discrete structures.

6.1 4: Laplacian heat-flow smoothing (local regularizer)

Let Ag be adjacency, Lg the (combinatorial) Laplacian. Define a softened
edge-weight matrix Wg(t) evolving by a discrete heat step:

Wis(t+1) = Iy (Ws(t) = AL(Ws (1)),

where L(-) is a Laplacian-like operator on weights, A > 0 is step size, and
ITyy projects back to an admissible weight space (e.g., nonnegative, symmet-
ric, bounded). Then 74 outputs a new structure 74(S) by thresholding or
sampling from Wg(T') at time T

Admissibility intuition. Local smoothing can reduce high-frequency ir-
regularity (a proxy for curvature noise) while keeping global macro-invariants
stable if A and 7" are small.



6.2 p: Spectral band-limiter (mode trimming without target
shift)

Let {\;,u;} be Laplacian eigenpairs (or an approximation). Define a band-
pass reconstruction using modes ¢ € B:

LS = Z )\i uzu;r 5
i€eB
and reconstruct 75(S) as the closest structure (in a chosen metric) whose

Laplacian matches Lg within tolerance. Operationally this can be done by
iterative edge rewiring minimizing ||Lgs — Lg||.

Admissibility intuition. 4 already selects near a global stationarity band;
p should only trim unstable modes within that band (no moving the target).

6.3 (: Divergence-minimizing rewiring (least-divergence step)

Define a structure-level divergence functional D(S) (distinct from V), e.g.
a flux inconsistency measure computed from local constraints. Define as a
constrained descent step:

70(S) = arg S’Ien/\ifr(lS) D(S") subject to |[V(S") = V(S| < ey,

where N (S) is a local neighborhood (single-edge rewires, small edits) and

ey is a small tolerance to prevent -target backreaction.

Admissibility intuition. This is a pure “stability step” that cannot cheat
by shifting V' far away from -selected values.

6.4 p: Curvature proxy equalization (local curvature flat-
tening with invariant locks)

Assume a local curvature proxy xg(v) defined on nodes/regions (e.g., degree-
based curvature, cycle tension density, or Ollivier-style curvature if avail-
able). Define as a local equalization with hard locks on protected totals:

ks — ks — uVE(Ks), with constraints I fixed within tolerance.

This is implemented by local edits that reduce curvature variance while en-
forcing constraints.



Admissibility intuition. If is truly “geometric stabilization”, it should
appear as curvature-variance reduction under strict macro locks.

6.5 p: Multi-scale (coarse-grain then refine, no target shift)
Define a coarse-graining operator C' and a refinement operator R. Let
TE(S) = R(Tcoarse(C(S)))a

where Teoarse is any admissible candidate on the coarse structure, and re-
finement preserves protected invariants (within tolerance) by construction.

Admissibility intuition. If is resolution-stable, a properly constrained
multi-scale should pass across n and across generator families.

7 Admissibility Tests and Verdict Logic for Cham-
ber XXXV

7.1 Inputs and fixed constants

For each run:
e ensemble size M, node scale n, generator family, seed set;
e 4 keep fraction f and fixed upstream weights (o, 8,7);

e guardrails: A (residual improvement), § (max drift), [a, b] (acceptance
band), floors ¢, 7.

7.2 Core pipeline (operational algorithm)
1. Generate E.

2. Compute V(S), Viarget, RA(E), and I(E).

3. Apply 45 to get Eq = Qg (FE) and compute Ry (Eq).
4. Apply candidate: Eq . = 179(Eq).

5. Compute Rj(FEq,) and drifts drift;.

6. Verdict for (E,0) is PASS iff:

Rx(Eq,r) < Ra(Eq) — A, max drift; <, |Eql/|E| € |a,b].
J



7.3 Coupling signatures to report (beyond PASS/FAIL)
A candidate that passes should also be reported with:

e residual contraction ratio

RA(Ear)
CR(#) = ———> € (0,1);

2 RA(Eq) ©.1)
e protected drift profile (drifty, ..., drifty);

e sensitivity curves over 6 showing a stable lock window O, (not a
single tuned point).

8 Minimal -Admissibility Checklist (Post-4;,)

A operator family is admissible post-4; only if it satisfies all of:

1. -fixedness: does not redefine Viarget and does not internally re-run .

2. Residual contraction: R, strictly improves beyond A on the -
filtered ensemble.

3. Macro stability: protected drift stays below & across seeds.
4. Lock window: there exists a nontrivial Oy, interval (robustness).

5. Cross-family sanity: does not only pass on one degenerate genera-
tor regime.

9 Admissible 7 Operators Post-{)y,

This section defines when a 7-operator is admissible after canonical {24, se-
lection. Throughout, €y; is treated as fixed and upstream.

9.1 Setting

Let E = {S1,...,Sum} be a finite ensemble of structures. Let

EQ = Q4b(E)
denote the Q4-filtered sub-ensemble with acceptance ratio
|Eq
—-€(0,1).
|E|

Each structure S carries:



e a scalar stationarity proxy V(S5),
e a protected macro-invariant vector 1(S) € R%.
Define ensemble averages
- 1
GV, I = YIS
= BEE=

and the residual proxy

RA(E _ |V(E) B Warget|

N max("/targed? 5) ‘

9.2 Definition (-Operator)
A T-operator is a deterministic map

9:S8 — S,
parameterized by 6, extended pointwise to ensembles:

TQ(EQ) = {7’9(5) : S e EQ}.

9.3 Definition (Admissibility Post-{2;,)

Fix guardrails:

A >0 (minimum residual improvement), >0 (maximum invariant drift),
A t-operator family {7g}oco is admissible post-Qyp if there exists 0 € ©

such that all of the following hold:

A1) -fixedness. 7y does not modify Viareet and does not internally reap-
g
ply or emulate any € selection.

(A2) Residual contraction.
RA(T@(EQ)) < RA(EQ) —A.

(A3) Macro-invariant protection. For each protected component I,
1i(m9(Eq)) — I;,(E
LwE) L) _ o,
max(|L;(E)],n)

with fixed denominator floor n > 0.

[a,b] C (0,1



(A4) Non-degeneracy. The 2 acceptance band remains coherent:

|Eq|
—= € a,b].
|E]

(A5) Structural well-posedness. For all S € Eq, 19(S) € S and the
map S — 7y(S) is deterministic given 6.
9.4 Definition (-Locking Regime)

A parameter subset O, C © is called a 7-locking regime if admissibility
conditions (A1)—(A5) hold uniformly for all # € O, across a prescribed
multi-seed run family.

Existence of a nontrivial ), is interpreted as evidence that 7 acts as
a genuine stabilizing completion conditioned on {243, rather than as a tuned
or degenerate post-processing step.

9.5 Non-Admissible Behaviors

A 7 operator is not admissible post-dy if it:
e reduces Ry by redefining V', Viarget, or the residual itself;
e violates macro-invariant protection beyond &;
e requires near-total acceptance or near-total rejection to pass;

e relies on uncontrolled randomness not included in 6.

10 Necessary (Not Sufficient) Conditions for 7- Admissibility
Post-2y,

This section derives conditions that must hold for a 7-operator to be admis-
sible post-{244, but which alone do not guarantee admissibility.

10.1 Notation

Let E be a baseline ensemble and Fq = Qg (FE) the fixed Qgp-filtered sub-
ensemble. For a 7 operator 7y, define

Eq ; :=19(Eq).
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Write 1 1
v ,—Z T(X)szI(SL
ex

and

‘V(X) - Warget|
maX(|marget‘35) ‘

RA(X) =

10.2 NCO: Well-posedness and -fixedness (structural neces-
sities)

NCo0a (Well-posedness). A necessary condition is:

79(5) €S VS € Eq,

and 79 must be deterministic given 6 (or randomness must be explicitly
parameterized and audited as part of ).

NCOb (-fixedness). A necessary condition is that 7y does not redefine
V', does not redefine Viarger, and does not reapply or emulate €2 selection
internally. Otherwise any improvement in R is not attributable to 7 as a
post-£24, operator.

10.3 NC1: Residual improvement implies a mean-shift in-
equality

Admissibility requires an improvement margin A > 0:
Rx(Eq,-) < Ra(Eq) — A.
Let D := max(|Viarget|, €) and define

do = |V(Eq) - do- = [V(Eqzr) = Viarget|

Then admissibility implies the necessary inequality
dor <dg— AD.
Equivalently,

’V(EQ,T) - Warget‘ < }V(EQ) - ‘/target’ - Amaxﬂ‘/:carget‘ae)-
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Interpretation. A post-{0y, admissible 7 must, at minimum, move the
QO-filtered mean V' closer to the fixed target by an amount large enough to
clear the improvement margin.

10.4 NC2: If V is unchanged, admissibility is impossible

If 79 preserves the ensemble mean of V on Eq, i.e.

V(Ea,) =V(Eq),
then
RA(Eqr) = Ra(Eq),

so the strict improvement requirement cannot hold for any A > 0. Hence a
necessary condition for admissibility (when A > 0) is:

V(Eqy) # V(Eq),

and moreover it must shift in the direction that reduces |V — Viarget|-

10.5 NC3: Macro-invariant protection implies component-
wise drift bounds

Fix drift tolerance § > 0 and denominator floor > 0. Admissibility requires
for each protected component I;:

|Z;(Eor) — I;(E)]
max(|1;(E)],n)
Therefore a necessary condition is the componentwise absolute bound

[I;(Eqyr) — I;(E)| <6 max([I;(E),n), j=1,...,d

Interpretation. No matter how strongly 7 improves Ry, if it forces any
protected macro observable outside this envelope, it cannot be admissible.

10.6 NC4: Admissibility forces a compatibility window be-
tween V-shift and invariant drift

Let AV := V(Eq,) — V(Eq) and AI := I(Eq,) — I(E). A necessary
condition is existence of parameters § such that:

AV reduces |V — Viarget| and ||AI||s remains within the guardrail.

Operationally, if empirical sweeps over 6 show that any parameter value
producing the required V-shift necessarily violates at least one protected
component bound, then no admissible # exists for that 7 family.
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10.7 NC5: Nondegeneracy is required before 7 is even eval-

uated

Admissibility post-£24; presupposes that the  band is coherent:

| Eo

—— € |a,b] C (0,1).

’E‘ [ ) ] ( ? )
Thus, if a run yields lffﬂl ¢ [a,b], then no T operator can be declared admissi-
ble on that run under the fixed admissibility protocol, because the upstream
condition for meaningful post-selection stabilization fails.

10.8 NC6: Robustness prerequisite (multi-seed necessity)

Let R be a prescribed set of seeds producing ensembles {E(T’)}TGR under the
same configuration. A necessary (but not sufficient) robustness condition is
that there exists at least one parameter value 6 such that:

30 € ©: (NC1-NC5) hold for a nontrivial fraction of r € R.
If every seed violates the improvement inequality (NC1) or violates pro-
tection bounds (NC3), the 7 family is ruled out as admissible under that
configuration class.

10.9 Summary of Necessary Conditions

For a 7 family to be admissible post-{24p, it is necessary that:

1. (NCO) 7y is well-defined on Egq and -fixed (no target/backreaction).
2. (NC1) 7 must reduce ‘V — Vtarget‘ by at least A max(|Viarget|, €)-
3. (NC2) 7 cannot leave V invariant if A > 0.

4. (NC3) Protected macro-invariant drifts must lie inside the componen-
twise envelope.

5. (NC4) There must exist a compatibility window where required V-shift
does not force invariant violation.

6. (NC5) The upstream €2 acceptance rate must be nondegenerate ([a, b]).

7. (NC6) The above must occur robustly across seeds (at least occasion-
ally), otherwise the family is excluded.

These conditions are necessary; passing them does not guarantee admissi-
bility because admissibility additionally requires a coherent lock window,
cross-family sanity, and sustained performance across runs.
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11 Summary

The — coupling hypothesis asserts the existence of a parameter regime where
acts as a stabilizing completion on the 4-selected band: it contracts the sta-
tionarity residual while preserving -protected macro invariants. The admissi-
ble families are those that cannot “cheat” by moving targets or destabilizing
invariants, and that exhibit a robust lock window across seeds and generator

families.
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