
Formal → Coupling Hypothesis
Mathematical and Operational Admissibility of Operators Post-4b

1 Scope and Positioning

This document formalizes the → coupled pipeline used in Chamber XXXV. is
treated as a global selection layer acting on an ensemble of discrete structures;
is treated as a geometric / stability layer acting on the -filtered ensemble.
The goal is to define (i) a mathematically testable coupling hypothesis and
(ii) a class of -operators admissible after the canonical 4b selection.

Canonical upstream fact (assumed). 4b is the RΛ-aligned bandpass
selector: it filters structures by proximity to a shared baseline target Vtarget

and yields a coherent acceptance band while preserving protected macro-
invariants (within a fixed guardrail). Chamber XXXV takes this as given
and does not redefine .

2 Objects, Ensemble, and Baseline Metrics

2.1 Ensemble

Let S denote the space of finite structures (e.g., graphs) generated under a
controlled generator family. An experimental run constructs a finite ensem-
ble

E = {S1, . . . , SM} ⊂ S.

2.2 Baseline scalar proxy V and residual RΛ

Each structure S is assigned scalar observables (examples used upstream):

Z0(S) ∈ [0, 1], Gap(S) > 0, CycleT(S) ≥ 0.

Define the vacuum proxy

V (S) = αZ0(S) + β
1

Gap(S) + ε
+ γ CycleT(S),
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with fixed weights α, β, γ ≥ 0 and small ε > 0.
Let the baseline target be a functional of the baseline ensemble (e.g., the

median):
Vtarget = median{V (S) : S ∈ E}.

Define the ensemble mean

V (E) =
1

|E|
∑
S∈E

V (S),

and the residual proxy

RΛ(E) =
|V (E)− Vtarget|
max(|Vtarget|, ε)

.

2.3 Protected macro-invariant vector I(S)

Let I : S → Rd denote protected observables (“-protected macro invariants”)
computed per structure and then ensemble-averaged. Write

I(S) =
(
I1(S), . . . , Id(S)

)
, I(E) =

1

|E|
∑
S∈E

I(S).

A canonical example set is:

I1(S) =
ρ(AS)

nS
, I2(S) =

Tr(LS)

nS
, I3(S) = H(degree distribution of S),

but the admissibility framework below does not depend on the specific choice,
only that I is fixed and guarded.

3 4b Selection as a Fixed Upstream Map

4b is an acceptance mask defined on E by proximity to the shared baseline
target Vtarget. Let k = ⌊fM⌋ where f ∈ (0, 1) is the keep fraction. Define
the score

score(S) = −|V (S)− Vtarget|.

Let EΩ ⊂ E be the subset of size k maximizing the score (i.e., closest to
Vtarget):

EΩ = Ω4b(E) = Top-k structures by score(S).

The selection is canonical in the sense that it is deterministic given E, Vtarget,
and f .
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4 The → Coupling Hypothesis

4.1 as a stabilizing operator family

A -operator is a map acting on structures:

τθ : S → S,

parameterized by θ (which may include step size, iteration count, smoothing
strength, etc.). We extend τθ to ensembles pointwise:

τθ(EΩ) = {τθ(S) : S ∈ EΩ}.

4.2 Two core requirements: (i) stationarity improvement,
(ii) invariant preservation

Define the residual after :

Rτ
Λ(θ;E) := RΛ

(
τθ(EΩ)

)
, where EΩ = Ω4b(E).

Define relative drift of protected invariants:

driftj(θ;E) :=

∣∣ Ij(τθ(EΩ))− Ij(E)
∣∣

max
(∣∣Ij(E)

∣∣ , η) , j = 1, . . . , d,

with a small floor η > 0 to prevent denominator blow-up.

4.3 Coupling hypothesis (mathematical statement)

Hypothesis H(→): Existence of a -locking regime. There exists a
nonempty parameter region Θlock such that for a nontrivial class of genera-
tors (families of E), for all θ ∈ Θlock,

(H1) Residual contraction: Rτ
Λ(θ;E) ≤ (1− κ)RΛ(EΩ) for some κ > 0,

(1)

(H2) -protection: max
1≤j≤d

driftj(θ;E) ≤ δ, (2)

(H3) Nondegeneracy:
|EΩ|
|E|

∈ [a, b] ⊂ (0, 1) (coherent acceptance band, not 0% or 100%).

(3)
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Interpretation. 4b creates a coherent band EΩ in which can act con-
tractively on stationarity residual while leaving protected macro-invariants
stable. The coupling is not “ always improves things”; it is the claim that
a regime exists where becomes an admissible stabilizer because has already
selected the right band.

4.4 Operational hypothesis (testable form)

For a run family {E(r)}Rr=1 (different seeds, same configuration class), define:

Improver(θ) = 1
(
Rτ

Λ(θ;E
(r)) < RΛ(E

(r)
Ω )−∆

)
,

Stabler(θ) = 1
(
max

j
driftj(θ;E

(r)) ≤ δ
)
,

Bandr = 1
(
|E(r)

Ω |/|E(r)| ∈ [a, b]
)
.

Then the coupling hypothesis is supported if there exists θ such that

1

R

R∑
r=1

Improver(θ) Stabler(θ) Bandr ≥ p0,

for a chosen confidence level p0 (e.g., p0 = 0.8).

5 Admissibility Framework for Operators (Post-4b)

5.1 Definition (Admissible operator)

Fix guardrails ∆ > 0 (minimum residual improvement), δ > 0 (maximum
invariant drift), and [a, b] ⊂ (0, 1) (coherent band window). A -operator
family {τθ}θ∈Θ is admissible post-4b if there exists θ ∈ Θ such that, across a
prescribed multi-seed run set,

1. Residual improvement (-conditioned):

RΛ

(
τθ(EΩ)

)
≤ RΛ(EΩ)−∆.

2. -protection:
max

j
driftj(θ;E) ≤ δ.

3. No -backreaction: τθ does not modify Vtarget and does not re-run
internally. ( is upstream and fixed.)

4. Structural well-posedness: τθ(S) ∈ S for all S, and the map is
deterministic given (S, θ).
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5.2 Important non-admissible behaviors

A operator is not admissible post-4b if it:

• trivially drives RΛ down by redefining Vtarget or modifying the residual
formula;

• masks instability by collapsing protected invariants via averaging arti-
facts;

• induces acceptance degeneracy (effectively requiring Ω to accept nearly
all or nearly none to pass);

• is non-deterministic unless its randomness is treated as part of the
operator definition and audited.

6 Canonical -Operator Families Admissible in Prin-
ciple

Below are -operator families designed to be admissible after 4b. Each is
expressed abstractly so it can be instantiated on graphs, lattices, or other
discrete structures.

6.1 A: Laplacian heat-flow smoothing (local regularizer)

Let AS be adjacency, LS the (combinatorial) Laplacian. Define a softened
edge-weight matrix WS(t) evolving by a discrete heat step:

WS(t+ 1) = ΠW

(
WS(t)− λL(WS(t))

)
,

where L(·) is a Laplacian-like operator on weights, λ > 0 is step size, and
ΠW projects back to an admissible weight space (e.g., nonnegative, symmet-
ric, bounded). Then τA outputs a new structure τA(S) by thresholding or
sampling from WS(T ) at time T .

Admissibility intuition. Local smoothing can reduce high-frequency ir-
regularity (a proxy for curvature noise) while keeping global macro-invariants
stable if λ and T are small.
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6.2 B: Spectral band-limiter (mode trimming without target
shift)

Let {λi, ui} be Laplacian eigenpairs (or an approximation). Define a band-
pass reconstruction using modes i ∈ B:

L̃S =
∑
i∈B

λi uiu
⊤
i ,

and reconstruct τB(S) as the closest structure (in a chosen metric) whose
Laplacian matches L̃S within tolerance. Operationally this can be done by
iterative edge rewiring minimizing ∥LS′ − L̃S∥.

Admissibility intuition. 4b already selects near a global stationarity band;
B should only trim unstable modes within that band (no moving the target).

6.3 C: Divergence-minimizing rewiring (least-divergence step)

Define a structure-level divergence functional D(S) (distinct from V ), e.g.
a flux inconsistency measure computed from local constraints. Define as a
constrained descent step:

τC(S) = arg min
S′∈N (S)

D(S′) subject to |V (S′)− V (S)| ≤ ϵV ,

where N (S) is a local neighborhood (single-edge rewires, small edits) and
ϵV is a small tolerance to prevent -target backreaction.

Admissibility intuition. This is a pure “stability step” that cannot cheat
by shifting V far away from -selected values.

6.4 D: Curvature proxy equalization (local curvature flat-
tening with invariant locks)

Assume a local curvature proxy κS(v) defined on nodes/regions (e.g., degree-
based curvature, cycle tension density, or Ollivier-style curvature if avail-
able). Define as a local equalization with hard locks on protected totals:

κS 7→ κS − µ∇E(κS), with constraints I fixed within tolerance.

This is implemented by local edits that reduce curvature variance while en-
forcing constraints.
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Admissibility intuition. If is truly “geometric stabilization”, it should
appear as curvature-variance reduction under strict macro locks.

6.5 E: Multi-scale (coarse-grain then refine, no target shift)

Define a coarse-graining operator C and a refinement operator R. Let

τE(S) = R
(
τcoarse(C(S))

)
,

where τcoarse is any admissible candidate on the coarse structure, and re-
finement preserves protected invariants (within tolerance) by construction.

Admissibility intuition. If is resolution-stable, a properly constrained
multi-scale should pass across n and across generator families.

7 Admissibility Tests and Verdict Logic for Cham-
ber XXXV

7.1 Inputs and fixed constants

For each run:

• ensemble size M , node scale n, generator family, seed set;

• 4b keep fraction f and fixed upstream weights (α, β, γ);

• guardrails: ∆ (residual improvement), δ (max drift), [a, b] (acceptance
band), floors ε, η.

7.2 Core pipeline (operational algorithm)

1. Generate E.

2. Compute V (S), Vtarget, RΛ(E), and I(E).

3. Apply 4b to get EΩ = Ω4b(E) and compute RΛ(EΩ).

4. Apply candidate: EΩ,τ = τθ(EΩ).

5. Compute RΛ(EΩ,τ ) and drifts driftj .

6. Verdict for (E, θ) is PASS iff:

RΛ(EΩ,τ ) ≤ RΛ(EΩ)−∆, max
j

driftj ≤ δ, |EΩ|/|E| ∈ [a, b].
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7.3 Coupling signatures to report (beyond PASS/FAIL)

A candidate that passes should also be reported with:

• residual contraction ratio

CR(θ) =
RΛ(EΩ,τ )

RΛ(EΩ)
∈ (0, 1);

• protected drift profile (drift1, . . . ,driftd);

• sensitivity curves over θ showing a stable lock window Θlock (not a
single tuned point).

8 Minimal -Admissibility Checklist (Post-4b)

A operator family is admissible post-4b only if it satisfies all of:

1. -fixedness: does not redefine Vtarget and does not internally re-run .

2. Residual contraction: RΛ strictly improves beyond ∆ on the -
filtered ensemble.

3. Macro stability: protected drift stays below δ across seeds.

4. Lock window: there exists a nontrivial Θlock interval (robustness).

5. Cross-family sanity: does not only pass on one degenerate genera-
tor regime.

9 Admissible τ Operators Post-Ω4b

This section defines when a τ -operator is admissible after canonical Ω4b se-
lection. Throughout, Ω4b is treated as fixed and upstream.

9.1 Setting

Let E = {S1, . . . , SM} be a finite ensemble of structures. Let

EΩ := Ω4b(E)

denote the Ω4b-filtered sub-ensemble with acceptance ratio

|EΩ|
|E|

∈ (0, 1).

Each structure S carries:
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• a scalar stationarity proxy V (S),

• a protected macro-invariant vector I(S) ∈ Rd.

Define ensemble averages

V (E) =
1

|E|
∑
S∈E

V (S), I(E) =
1

|E|
∑
S∈E

I(S),

and the residual proxy

RΛ(E) =
|V (E)− Vtarget|
max(|Vtarget|, ε)

.

9.2 Definition (-Operator)

A τ -operator is a deterministic map

τθ : S → S,

parameterized by θ, extended pointwise to ensembles:

τθ(EΩ) = {τθ(S) : S ∈ EΩ}.

9.3 Definition (Admissibility Post-Ω4b)

Fix guardrails:

∆ > 0 (minimum residual improvement), δ > 0 (maximum invariant drift), [a, b] ⊂ (0, 1) (coherent band).

A τ -operator family {τθ}θ∈Θ is admissible post-Ω4b if there exists θ ∈ Θ
such that all of the following hold:

(A1) -fixedness. τθ does not modify Vtarget and does not internally reap-
ply or emulate any Ω selection.

(A2) Residual contraction.

RΛ

(
τθ(EΩ)

)
≤ RΛ(EΩ)−∆.

(A3) Macro-invariant protection. For each protected component Ij ,∣∣Ij(τθ(EΩ)
)
− Ij(E)

∣∣
max(|Ij(E)|, η)

≤ δ, j = 1, . . . , d,

with fixed denominator floor η > 0.
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(A4) Non-degeneracy. The Ω acceptance band remains coherent:

|EΩ|
|E|

∈ [a, b].

(A5) Structural well-posedness. For all S ∈ EΩ, τθ(S) ∈ S and the
map S 7→ τθ(S) is deterministic given θ.

9.4 Definition (-Locking Regime)

A parameter subset Θlock ⊂ Θ is called a τ -locking regime if admissibility
conditions (A1)–(A5) hold uniformly for all θ ∈ Θlock across a prescribed
multi-seed run family.

Existence of a nontrivial Θlock is interpreted as evidence that τ acts as
a genuine stabilizing completion conditioned on Ω4b, rather than as a tuned
or degenerate post-processing step.

9.5 Non-Admissible Behaviors

A τ operator is not admissible post-Ω4b if it:

• reduces RΛ by redefining V , Vtarget, or the residual itself;

• violates macro-invariant protection beyond δ;

• requires near-total acceptance or near-total rejection to pass;

• relies on uncontrolled randomness not included in θ.

10 Necessary (Not Sufficient) Conditions for τ -Admissibility
Post-Ω4b

This section derives conditions that must hold for a τ -operator to be admis-
sible post-Ω4b, but which alone do not guarantee admissibility.

10.1 Notation

Let E be a baseline ensemble and EΩ = Ω4b(E) the fixed Ω4b-filtered sub-
ensemble. For a τ operator τθ, define

EΩ,τ := τθ(EΩ).
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Write
V (X) =

1

|X|
∑
S∈X

V (S), I(X) =
1

|X|
∑
S∈X

I(S),

and

RΛ(X) =

∣∣V (X)− Vtarget

∣∣
max(|Vtarget|, ε)

.

10.2 NC0: Well-posedness and -fixedness (structural neces-
sities)

NC0a (Well-posedness). A necessary condition is:

τθ(S) ∈ S ∀S ∈ EΩ,

and τθ must be deterministic given θ (or randomness must be explicitly
parameterized and audited as part of θ).

NC0b (-fixedness). A necessary condition is that τθ does not redefine
V , does not redefine Vtarget, and does not reapply or emulate Ω selection
internally. Otherwise any improvement in RΛ is not attributable to τ as a
post-Ω4b operator.

10.3 NC1: Residual improvement implies a mean-shift in-
equality

Admissibility requires an improvement margin ∆ > 0:

RΛ(EΩ,τ ) ≤ RΛ(EΩ)−∆.

Let D := max(|Vtarget|, ε) and define

dΩ :=
∣∣V (EΩ)− Vtarget

∣∣, dΩ,τ :=
∣∣V (EΩ,τ )− Vtarget

∣∣.
Then admissibility implies the necessary inequality

dΩ,τ ≤ dΩ −∆D.

Equivalently,∣∣V (EΩ,τ )− Vtarget

∣∣ ≤ ∣∣V (EΩ)− Vtarget

∣∣−∆max(|Vtarget|, ε).
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Interpretation. A post-Ω4b admissible τ must, at minimum, move the
Ω-filtered mean V closer to the fixed target by an amount large enough to
clear the improvement margin.

10.4 NC2: If V is unchanged, admissibility is impossible

If τθ preserves the ensemble mean of V on EΩ, i.e.

V (EΩ,τ ) = V (EΩ),

then
RΛ(EΩ,τ ) = RΛ(EΩ),

so the strict improvement requirement cannot hold for any ∆ > 0. Hence a
necessary condition for admissibility (when ∆ > 0) is:

V (EΩ,τ ) ̸= V (EΩ),

and moreover it must shift in the direction that reduces |V − Vtarget|.

10.5 NC3: Macro-invariant protection implies component-
wise drift bounds

Fix drift tolerance δ > 0 and denominator floor η > 0. Admissibility requires
for each protected component Ij :∣∣Ij(EΩ,τ )− Ij(E)

∣∣
max(|Ij(E)|, η)

≤ δ.

Therefore a necessary condition is the componentwise absolute bound∣∣Ij(EΩ,τ )− Ij(E)
∣∣ ≤ δ max(|Ij(E)|, η), j = 1, . . . , d.

Interpretation. No matter how strongly τ improves RΛ, if it forces any
protected macro observable outside this envelope, it cannot be admissible.

10.6 NC4: Admissibility forces a compatibility window be-
tween V -shift and invariant drift

Let ∆V := V (EΩ,τ ) − V (EΩ) and ∆I := I(EΩ,τ ) − I(E). A necessary
condition is existence of parameters θ such that:

∆V reduces |V − Vtarget| and ∥∆I∥∞ remains within the guardrail.

Operationally, if empirical sweeps over θ show that any parameter value
producing the required V -shift necessarily violates at least one protected
component bound, then no admissible θ exists for that τ family.
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10.7 NC5: Nondegeneracy is required before τ is even eval-
uated

Admissibility post-Ω4b presupposes that the Ω band is coherent:
|EΩ|
|E|

∈ [a, b] ⊂ (0, 1).

Thus, if a run yields |EΩ|
|E| /∈ [a, b], then no τ operator can be declared admissi-

ble on that run under the fixed admissibility protocol, because the upstream
condition for meaningful post-selection stabilization fails.

10.8 NC6: Robustness prerequisite (multi-seed necessity)

Let R be a prescribed set of seeds producing ensembles {E(r)}r∈R under the
same configuration. A necessary (but not sufficient) robustness condition is
that there exists at least one parameter value θ such that:

∃ θ ∈ Θ : (NC1–NC5) hold for a nontrivial fraction of r ∈ R.

If every seed violates the improvement inequality (NC1) or violates pro-
tection bounds (NC3), the τ family is ruled out as admissible under that
configuration class.

10.9 Summary of Necessary Conditions

For a τ family to be admissible post-Ω4b, it is necessary that:

1. (NC0) τθ is well-defined on EΩ and -fixed (no target/backreaction).

2. (NC1) τ must reduce
∣∣V − Vtarget

∣∣ by at least ∆max(|Vtarget|, ε).

3. (NC2) τ cannot leave V invariant if ∆ > 0.

4. (NC3) Protected macro-invariant drifts must lie inside the componen-
twise envelope.

5. (NC4) There must exist a compatibility window where required V -shift
does not force invariant violation.

6. (NC5) The upstream Ω acceptance rate must be nondegenerate ([a, b]).

7. (NC6) The above must occur robustly across seeds (at least occasion-
ally), otherwise the family is excluded.

These conditions are necessary; passing them does not guarantee admissi-
bility because admissibility additionally requires a coherent lock window,
cross-family sanity, and sustained performance across runs.
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11 Summary

The → coupling hypothesis asserts the existence of a parameter regime where
acts as a stabilizing completion on the 4b-selected band: it contracts the sta-
tionarity residual while preserving -protected macro invariants. The admissi-
ble families are those that cannot “cheat” by moving targets or destabilizing
invariants, and that exhibit a robust lock window across seeds and generator
families.
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